

Metallurgy, key challenges and technical solutions in e-scrap smelting

Hannes Holmgren Ross Andrews Mari Lindgren

Metso:Outotec

Metso:Outotec 21 June, 2021 RESTRICTED

Practicalities

- Our info session runs for one hour
 - 40 minutes of presentation
 - 20 minutes of Q&A
- Questions can be asked by typing in the chatbox
- All questions will be answered at the end of the presentation in the Q&A session
- If we run out of time during Q&A, we will answer any questions post-event by mail.
- A link to the meeting recording and presentation will be available on https://www.mogroup.com/events/
- Slides of the presentation are available for download

How to ask questions?

Metso:Outotec

Presenters

Hannes Homgren, Technology Manager Precious Metals & Kaldo

- 10 years copper smelter experience with primary and secondary operations
- 3 years with Metso Outotec in process engineering

Ross Andrews, Process Design Manager, TSL Smelting

- 17 years with Ausmelt/Metso Outotec in process engineering
- Extensive experience in theoretical studies, pilot plant testing, and design and commissioning of smelters including secondary copper processes.

Mari Lindgren, Director of R&D, Smelting

- Mari has Ph. D in Materials Engineering.
- She has 20+ years in research in various roles. 45+ peer-reviewed articles and 25+ conference papers.

Introduction and recap

Introduction

- Metso Outotec is the frontrunner in sustainable technologies and e-scrap is a good example
- E-scrap generation grows and provides an interesting raw material source
- Metso Outotec eScrap solution:
 - Full product portfolio
 - R&D facilities for optimization
 - Based on references and experience

Recap: Investing into a new eScrap smelter – factors to consider

- Factors to consider
 - Raw material quality and quantity
 - Impurity elements
 - Environmental protection
- Definitions
 - WEEE and e-waste
 - e-scrap
 - eScrap solutions

Section 1

How do we develop flowsheets?modelling and testing

Metso:Outotec 21 June, 2021 RESTRICTED

eScrap flowsheet building

- Elemental Analysis -> Component Analysis
- What's missing?
- Feed rates
- Group Feeds
 - High grade feeds can go further 'down' the flowsheet
 - Any feeds require pretreatment?
- Understand Product requirements
 - Black Copper/Raw Copper/Refined Copper

Sample	Cu	Fe	Ni	Co	Zn	Cr	Sn	Pb	Ag	Sb	SiO ₂	CaO	Al 2O3	MgO	MnO	TiO ₂	s	'Organics'
MB #1	23.3	0.16	0.02	0.01	0.19	0.01	0.02	0.11	0.01	0.01	38.44	7.28	7.05	0.19	0.01	1.25	0.46	24.8
eTag #1	16.9	11.2	1.49	0.02	0.47	0.7	0.1	0.36	0.7	0.7	39.02	5.26	5.31	0.18	0.7	0.73	0.18	20.2
eTag #2	16.3	7.79	1.51	0.02	0.5	0.38	0.1	0.05	0.38	0.38	42.04	5.78	5.56	1.48	0.38	0.74	0.52	19.1
RAM #1	12.5	5.97	4.24	0.01	0.09	0.02	0.17	0.32	0.02	0.02	53.13	3.67	4.23	0.1	0.02	0.45	0.12	16.2
RAM #2	17.4	3.39	2.41	0.01	0.23	0.01	0.02	0.11	0.01	0.01	47.04	3.92	3.84	0.38	0.01	1.25	0.05	21.8
CPU	19.5	10.4	7.06	2.49	0.23	0.01	0.6	0.08	0.01	0.01	33.8	3.76	3.4	0.15	0.01	2.45	0.43	16.6

Sample	CI	Br			
MB #1	0.07	11.08			
MB #2	0.05	7.4			
eTag #1	0.03	9.44			

Sample	GCV (MJ/kg)
eTag #1	8.32
MB* #1	8.74
MB #2	8.25
MB #3	9.18
eTag #2	6.44

Steps in flowsheet building (cont.)

- Set up flowsheet
 - Generally, number of feeds and product quality will dictate complexity
- Use HSC SIM (or similar)
 - Need to consider recycle streams and bleeds
- Set process conditions to influence element distributions
 - Temperature, pO₂, slag chemistry
- Optimized recoveries

12

Process modelling

- Slag Chemistry requirements feed blend will result in a natural slag chemistry that will need adjustment to achieve suitable properties (typically melting point and viscosity)
 - Keep fluxing to a minimum. More slag, potentially more metal loss to slag, increased energy cost
- Modelling using HSC Chemistry, MTDATA, FactSage, Plant data, Pilot plant data, Laboratory data and literature.
- Important to understand differences in equipment and how it's modelled
 - Data interpretation is important, particularly around volatile components

Key challenges in process modelling

- Aluminium in feed. Will oxidize to Al₂O₃ which can make slag challenging.
 - Influence equipment choice and fluxing targets
- Plastics in WEEE– PVC, Epoxy, HIPS, ABS, PP, other plastics
 - Energy source
 - Primary utilization bath temperature
 - Secondary utilization steam from heat recovery boiler
 - A source of halides, dioxins and furans
- Critical to:
 - Understand the feed
 - Understand the thermodynamics
 - Understand the equipment

Characterisation and testwork

Metso:Outotec 21 June, 2021 RESTRICTED

Metallurgical tests

- Experimental testing
 - When thermodynamical databases incomplete
 - For sizing and up-scaling
 - Process guarantees
- Laboratory scale
 - Distribution coefficients
 - Synthetic or doped slags can be used
- Pilot scale
 - Needs more feed material
 - Distribution coefficients
 - Estimation of energy balance

Tin distribution, wt-%

How do we develop flowsheets?

We aim to optimized solution

Combination of modelling and experimental work

Requires deep metallurgical knowledge

We have all the capabilities to support the customers

Section 2

eScrap solutions and challenges in e-scrap smelting

Metso:Outotec 21 June, 2021 RESTRICTED

Slag challenge

Slag system in Ausmelt TSL and Kaldo

- Same base for slag system for TSL and Kaldo
- Ausmelt requires fluid slag (Kaldo can handle high viscosity)
- FeO-SiO2-CaO-Al2O3 smelting
- FeO-SiO2 converting

Goals:

- Impurities to slag, one target Al2O3 15-20 % (today, tomorrow?)
- Slag amount controlling element can vary
- Low levels of Cu and PMs

Challenges:

- Unknown and varying feed —solved by mixing and e-scrap quality control
- Melting point and slag viscosity, PM-losses, enclosures-> poor combustion

Making a good slag is key – as in all pyro processes

Impurities challenge

The behavior of main impurities in e-scrap smelting categories

- Working environment
 - Be, Hg, Li-batteries and Radioactive elements
 - Monitoring and rejecting at the smelting gate
- Circulating and by-products
 - Pb, Sn, Zn, Ni
 - By products or dilution

Impurities challange cont.

- · Slag elements
 - Si, Cr, Al, Mg, Fe
 - Slag composition
- Cu impurities
 - Bi, Sb Cu impurities
 - not as high today as past 20 years
 - Dilution
- Environmental challenges
 - CI, Br, Hg

Gas cleaning flowsheet development

- Step 1, Furnace off-gas design basis
- Step 2, Client requirements (byproducts and waste)
- Step 3, Process modelling; water, mass and heat balance
- Step 4, Equipment sizing, based on process model

Gas cleaning main process steps

Metso:Outotec

Gas cleaning options

- Kaldo furnace ventilation
- Heat recovery boiler
- Precipitation in water circulation system
- Filter cake treatment (hydrometallurgy, drying etc.)
- NOx removal by oxidation and scrubbing
- NOx removal by SCR (selective catalytic reduction)

Wastewater treatment overview

Saltwater discharge or zero liquid discharge

Example of large scale eScrap flowsheet

- Modular thinking
- Optimized solution for each case
- Result of flowsheet modelling and testing a basis to get a flowsheet
- Process guarantees

Low and high Cu-feed

- Capacity up to >100 ktpa
- Electro-refining process or leaching SX-EW

Metso:Outotec

Summary

Complete eScrap solutions built of proven technologies

Metso Outotec has the knowhow and capabilties to support the whole lifecycle of a plant

Q&A?

How to ask questions?

Metso:Outotec

Partner for positive change

Contacts:

hannes.holmgren@mogroup.com

ross.andrews@mogroup.com

mari.lindgren@mogroup.com

Smelting sales director:

<u>lauri.narhi@mogroup.com</u>

Keep yourself updated in interesting topics and subscribe our Smelting Newsletter!

Click here 🖓

Smelting Newsletter

for the sustainable smelting community

Metso:Outotec

The recording of this webinar with handouts will be available on our website 1 wk after the webinar

